
DOCUMENT RESUME

ED 100 369 IR 001 468

AUTHOR Claybrook, Billy G.
TITLE FOL: A Language for Implementing File Organizations

for Information Storage and Retrieval Systems.
Technical Report No. CS73008-R.

INSTITUTION Virginia Polytechnic Inst. and State Univ.,
Blacksburg. Sept. of Computer Science.

PUB DATE Nov 73
NOTE 15p.

EDRS PRICE HF-$0.75 HC-$1.50 PLUS POSTAGE
DESCRIPTORS Completer Programs; *Data Bases; Information

Prodessing; *Information Retrieval; *Information
Storage; *Information Systems; *Programing
Languages

IDENTIFIERS *FOL; List Processing Language; LPL; PL 1

ABSTRACT
The computer language FOL is intended to facilitate

the implementation of file organizations for information storage and
retrieval systems. In many information storage and retrieval
applications *$e designer, initially, does not know how best to
organize a dr base for efficient retrieval and ease of updating and
modifying. I is felt that FOL will provide the designer with the
tools for quickly implementing different file organizations during
the experimentation stages of data base design. The paper inclhdes a
brief technical description of FOL, its intended uses, and tha basic
concepts involved in its development. (Author/DGC)

Technical Report CS73008-R

FOL: A LANGUAGE FOR IMPLEMENTING FILE ORGANIZATIONS
FOR INFORMATION STORAGE AND RETRIEVAL SYSTEMS

Billy G. Claybrook

S DEPARTMENT OF HEALTH
DUCAT ION I *ELF ARE

NATIONAL INSTITUTE OF
FOUCATION

cy)(,vt na7 440. HF F (.14(JF .1 t

474'f ,.` NU, 'A1(f 'AQ v uF Pkt
,E 64104 VA)1f fl(
F

.k

November 1973

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061.

2/3

ABSTRACT

The language FOL is described. FOL facilitates the implementation

of file organizations for IS & R systems. FOL is implemented in a list

processing language LPL. Files in FOL are interepreted as a list of records,

where each record equivalent to a node structure. A description of LPL

is also included.

I. _INTRODUCTION.

This paper describes a language (''JL) that facilitates the implementa-

tion of file organizations for Information Storage and Retrieval (IS & R)

systems. In many IS & R applications the designer, initially, does not know

how best to organize his data base for eTficient retrieval and ease of

updating and modifying. We feel that F0L will provide the designer with

the tools for implementing, quickly, different file organizations during

the experimentation stages of data base design.

FOL allows the user to describe the structure of records in a file as

nodes in a list. FOL provides an easy and illustrative scheme for describing

be format of records in a file. The technique for record description is

similar to that used in CO3OL [1], but FOL has some additional features

that allow record description to be :lore tioxible.

FOL is implemented in a list processing language (LPL). LPL allows any

type of node structure to be defined and thus appears to be a convenient

language for implementing FOL. The advent of virtual memory machines allows

this approach to the development and implementation of file organizations to

be feasible. The designer can proceed with the important aspects of file

organization design and omit much of the drudgery of file system programming.

The primary purposes of this paper are: (1) to present a brief descrip-

tion of FOL, (2) to describe its intended uses, and (3) to describe the

basic concepts involved in its development. Since we are primarily interested

in presenting concepts and ideas, we do not include a complete description

of the syntax of FOL; however, examples are given and comments on the syntax

are included where appropriate.

In Section II, we discuss the design of LPL to provide the reader with

fL

2

the background for the discussion of FOL. And in Section III, we provide a

description of FOL and give some examples of its use.

II. DESCRIPTION OF LPL.

This section describes LPL and presents the basic ideas in its design

and implementation. LPL has been used in several algebraic manipulation

programs, e.g. writing ar interpreter for the first-order predicate calculus

language, polynomial manipulations, and binary tripe processing.

Overview of LPL

The initial implementation of LPL is in PL/1 [2] as an extension to PL/1.

Programs written in LPL are scanned during a pre-processor pass and translated

into a PL/1 program compiled by the PL/1 compiler. LPL requires the use of

dynamic storage allocation so the choice of PL/1 was natural for a first imple-

mentation (this implementation was possible in PL/1 only after some tricky and

imaginative uses of PL/1 based structures).

LPL differs from other list processing languages, e.g. SLIP [3] and LISP

[4], because it allows different types of nodes, that can vary in size and

structure, to be defined by the user. This allows the user to define nodes

that are natural for his applications, thus allowing him to concentrate on

ideas and avoid the clumsiness of trying to determine a way to represent a

structure in a less flexible list processing language.

Description of LPL

LPL allows any number of node types to be defined by the user. LPL uses

a template (for each typo of node) to describe the attributes of each node

type. The node structure in LPL is developed to facilitate garbage collec-

tion, copying of lists, etc. Each node in LPL can have the following

fields ((1)-1,1) are common to every node):

(1) a type field (TYPE) that contain5 a pointer to the template
describing this type of node,

(2) an activity bit (ACT) that is used to indicate whether a node
is active (appears in a user list) or inactive (does not appear
in a user list and can be freed by the RELEASE command).

(3) a copy bit (COPY) for use in copying lists, especially recur-
sive lists,

(4) two link fields, MLP and MRP, that link all nodes allocated in
a doubly linked "super" list (this List is processed by the
garbage collector to release inactive nodes), and

(5) the other six entries are optional and any of them can be
included in the node by using the DEFINE statement discussed
below (these entries define the type(s) of values and number of
link fields the user desires in a node structure).

Before we discuss the format of LPL statements, we feel that two other

comments are appropriate. First, LPL is designed so that a considerable

amount of error checking is performed for the user. Secondly, the user cannot

access any of the node entries (1) - (4) described above; instead only the LPL

programming system can manipulate them.

The following attributes are available in LPL (all *mai. PL/1 data types

are also available):

NODETYPE - Attribute of a variable used for represtiting the type
of a node

REAL - Standard definition

INTEGER - Standard definition

ALPHA - Attribute of a vAiable having an alphanumeric character
string as its value

IDENT Attribute of a variable having the identific1tion attri-
bute (e.g. the ID field in SLIP)

RFCNT Reference count attribute

4

POINTER - Indicates the link or point'er attribute

LIST - Declares a variable to be a pointer to a list

STACK - Declares a variable to be a pointer to a stack

QUEUE - Declares a variable to be a pointer to a queue.

A detailed discussion of the LIST, STACK,and QUEUE attributes follow in a

later subsection.

Definition of a Node Structure

e....aThrrINE statement in LPL allows the user to describe the nodes, and

hence their structure, that he will use in an application. The format of

the DEFINE statement is illustrated in the following example:

DEFINE NODE (ITYP, RV(I), IV(J), CV(K), ID(L), RC(M), LK(N)),

where the variables in this argument list must appear in a declaration statement

such as the one below (the declaration statement must precede the DEFINE state-

ment):

DCL ITYP NODETYPE,
RV REAL,
IV INTEGER,
CV ALPHA(20),
ID IDENT,
RC RFCNT,

LK POINTER;

The mode of the variables in the declaration statement indicate to the DEFINE

statement the attributes of the fields to be included in a node of type ITYP.

Not all of the seven parameters must appear in the DEFINE statement. Only

those parameters necessary to describe the structure of a node are included.

Let us look at the DEFINE statement in detail. ITYP has attribute NODETYPE,

thus indicating the type of node being defined (the value of ITYP is an integer

quantity). Each node can have three kinds of values REAL, INTEGER, or ALPHA.

5

The user selects only those reguire'd for a node cf type ITfP. The subscripts

I, J, and K are the number of REAL, INTEGER, and ALPHA values in a node,

respectively. The number of values can be variable or constant. ID(L), RC(M),

and LK(N) are the identifier, reference count, and link entries, respectively,

with L, M, and N being the number of each such fiel, n a node. It is diffi-

cult to visualize a node that requires more than one identifier or reference

count field, but the option exists.

As an example the following DEFINE statement

DEFINE NODE (ITYP, IV(2), CV(3), LK(2))

describes a node of type ITYP that has two integer values, three alphanumberic

string values with 20_01aracters each, and two links or pointers. The entries

in the DEFINE statement can apnear in any order.

LPL Statement Forms

The format of each LPL statement (with the exception of the DEFINE statement)

is given and briefly described below (each LPL statement is delimited by a semi-

colon). Nodes pointed to by P, where P has attribute POINTER, are desionated

as node P; and [] indicates the contents are optional.

1. GET P,I; - Allocates a node P of type I.

2. DELETE P,T[, ; Deletes node P in list T, P follows node R.

3. INSERT P,T,R; - Inserts node P in list T after node R.

4. RELEASE P; - Frees node P, this statement succeeds only when
the activity bit for node P is turned off and
the reference count for node P is zero.

5. ENTER expression,T; - Enters the value of expression into T (1* must
be a STACK or QUEUE).

6. REMOVE X,T; Remove an entry from T (T must be a STACK or
QUEUE) and place it in X.

7.

8.

12.

13.

14.

15.

6

RV(N) =expression; Sets the Nth (N is an integer) real value
of node P equal to the value of expression
(the attribute of a value in node P can be
REAL, INTEGER, ALPHA, IDENT, RFCNT, or
POINTER).

X=RV(N),P; X is the Nth REAL value in node P (a value
can have attribute REAL, INTEGER, ALPHA,
IDENT, RFCNT, or POINTER).

COPY S,T; Makes a copy of list S in list T.

P-N,T; - '') is the pointer to the Nth node in list T.

ERASE T; Erase list T (the list will be erased only
if every node has its activity bit turned
off and its reference count is zero.

CONCATENATE S,T; Concatenate lists S and T in the order given.

SPLIT T,P; Spit list T at node P.

SPLIT T,N,P; - Split list T at the Nth node, P is the pointer
to the new list.

P, (SINGLY ;

DOUBLY
Declares node P to be a singly-linked, doubly
linked, left-right linked, or multi-linked

L-R (more than two links) node [5].
MULTI_

16. CREATE I (STACK'

QUEUE

LISTJ

SINGLY) REAL The modes REAL, INTEGER,
DOUBLY 'INTEGER ALPHA, POINTER apply only

SINGLY) IALPHA to STACKS and QUEUES.
!DOUBLY POINTER.)

SINGLY
DOUBLY

L-R

17. COLLECT; - Invokes the garbage collector (garbage collection
is also done automatically by LPL).

Some of the LPL statements require a more detailed description. The GET

statement allocates a node of a specified type. During the allocation of this

node the template for this node type is interrogated to determine the node's

structure. The DELETE and INSERT statements cause the deletion (insertion) of

a node from (into) a list. These statements automatically handle nodes that

are SINGLY, DOUBLY or L-R (left-right) linked. For multilinked nodes, the

n

7

user must specify the specific pointers to modify during insertion or deletion.

The INSERT statement sets the activity bit in a node, and the DELETE instruc-

tion resets the activity bit.

The CREATE statement (#16) allows the ure to declare a variable to be

a pointer to a LIST, STACK, or QUEUE. Any POINTER variable can also point to

a list, stack, or queue. However, the CREATE statement declares explicitly

what type of structure is pointed to and also iidicates the format of the list

structure, e.g. singly-linked, doubly-linked, etc. All nodes that appear in

these structures must agree with the format given in the CREATE statement.

Pointers to lists that have a nonnomogeneous mixture of nodes should no be

referenced in a CREATE statement.

The CREATE statement also implies that the top of a STACK and the front

and rear of a QUEUE are automatically set as new entries are added to them. The

CREATE statement for a STACK causes a structure, pointed to by T, to be set up.

This structure contains a pointer to the stack; this pointer (initially NULL) is

set as entries are added to it and removed from it. The variable T in the CREATE

statement for a QUEUE points, not directly to the queue, but to a structure

that contains the front and rear pointers to the queue. The variable T in the

CREATE statement for a LIST points to a list head that contains an identifier

(the QUEUE and STACK structures also contain an identifier) indicating the

format of the list and also a pointer to the first node in the list.

Associated with STACK structures is a function TOP(T) that returns as its

value a pointer to the top of STACK T. Also FRONT(T) and REAR(T) are functions

that return as values pointers to the front and rear, respectively, of QUEUE T.

III. DESCRIPTION OF FOL

FOL is an extension of LPL. FOL statements are translated into LPL by a

'1;7 4

8

preprocessor and executed. Again, no attempt is made here to define all of

the FOL syntax; instead, we introduce the reader to the basic concepts of FOL.

FOL allows the user to describe the structure of records in a file, and hence

the file, in a descriptive manner similar to that of COBOL. However, FOL

allows the structure of a record to change more readily than COBOL. Although

COBOL allows a file to have different types of records, the size of these

records cannot be easily changed and administered as FOL allows. Also, since

FOL represents records in a file as nodes in a list, no input/obt ut problems

are encountered directly by the user.

FOL allows the user to describe his own file organizations with a minimum

of effort. Most programming systems support only a few standaW file organiza-

tions, e.g. sequential, indexed-sequential, and direct. However, some IS & R

applications require multilist, inverted,or other more esoteric file organiza-

tions to allow efficient retrieval of ik,forgation. FOL is useful because it

allows the user to define his own'file structure, vary record sizes, and pro-

gram his own methods for updating and modifying the files. Techniques for up-

dating and modifying the files are relatively simple since a file is interpreted

as a list of records.

The implementation of FOL in LPL makes the approach to file organization

design described in this paper feasible. LPL is the basis for FOL and allows

the user freedom and convenience in manipulating filet.

File Description in FOL.

A file is described in FOL in the following manner:

DCL X FILE MULTI,
X CONSISTS OF[quanto] RECORDS Y,
Y CONSISTS OF[quanti] rims Z1,Z2,Z3,24
Z1 CONSISTS OF[quant2] KEYS W ALPHA,

W CONSISTS OF quanta BYTES; .
72 CONSISTS OF[quant4]1L1NKS-P POINTER;
73 CONSISTS OF[quant5] TATMA D REAL,
D CONSISTS OF[quant0 BYTES;

74 CONSISTS OF[quant7] DATAREA E ALPHA,
E CONSISTS OF[quant0 UVIEST

The above description of file X can be interpreted as a tree structure (similar

I
I

to structures in PL/1). The entries that represent the terminal nodes of the

tree are terminated by semicolons (the terminal nodes are W's, P's, D's, and

E's). Other entries in the file description are separ d by commas. The

Words underlined in the declaration are descriptive word,s. The user car. add

/
his own descriptive words by using the function DE PT (descriptive word).

DESCRIPT adds user descriptive words to a table tsed dartRg the preprocessor

scan. ,/

FILE is a FOL attribute and MULTI is a user supplied name for the file

organization. This name can be used by the programmer for associating his

update and modification routines with the file organization named MULTI.

The quanti in the description of file X are optional in some entries (they

must appear in the lowest level entries such as W, P, D, and E). However, if

a quanti appears in the declaration, it must be an integer constant or variable.

A fixed record structure can be indicated by giving quanti-quant8 constant

values (rarely does the user care to specify quant0 a priori); in this case

the user can allocate a record by executing ALLOC Y. If he desires five

records, he can specify ALLOC Y(5).

If quant)is a variable quantity,then its value must be set prior to allo-

cating a record or file. If quantlis not specified for FIELDS Z1, 72, Z3, and

Z4 above , then the following sequence must be given (the constants are set

only for this example):

ALLOC Z1(3); ALLOC Z2(3); ALLOC Z3;
ALLOC Z4;
ALLOC Y;

10

This sequence of statements allocates a record with three keys, three link

fields, one real data area, and one alphanumeric data area.

The above discussion for allocating records is very flexible because

it allows the user freedom in describing the record structure. As an

example of the convenience of this method for describing a file organization

constder the following task - adding a key to an existing record in a

miltilist organization. A record with the proper structure is allocated,

and the information in the old record is copied along with the new key

(and presumahly a corresponding link field) into the new record. The

old record is deleted fro.) the list and the new record is inserted into

the list in its place. These operations are easily performed within the

scope of LPL.

In the description of FOL given above, we have made no attempt to

provide the user with "canned" organizations, but instead we have attempted

to provide him with the facility for describing his own organizations.

IV. SUMMARY

Since LPL is an extension of PL/1 and FOL is a slight extension of

LPL (the only current extension being the capability to describe the

organization of a file as a list of records), the user has a powerful

language with which to work. However, FOL is primarily designed for im-

plementing file organizations and for providing the facilities, through

LPL, for updating and modifying files. A possible extension to FOL is a

means for allowing the user to describe the structure of directories in

a manner similar to that used in describing files.

11

REFERENCES

1. Fiengold, Carl. Fundamentals of COBOL Programming, W.C. Brown Company,

Dubuque, Iowa, 1973, 691 pp.

2. IBM System/360 PL/1(F) Language Reference Manual, GC28-8201-4.

3. Smith, D.K. "An Introduction to the List-Processing Language SLIP",
Programming Systems and Languages, Rosen, Saul ted.), McGraw-

New York, 1967, pp. 393-417.

McCarthy, John, Abrahams, Paul, Edwards, D.J., Hart, T.P., and Levin, M.I.

c. LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Mass. 1969,

106 pr.

Knuth, D.E. The Art of Computer Programming, Vol. I, Addison-Wesley,

Reading, Mass., 1968, 634 pp.

